Azimuth-elevation direction finding using a microphone and three orthogonal velocity sensors as a non-collocated subarray.

نویسندگان

  • Yang Song
  • Kainam Thomas Wong
چکیده

An acoustic vector-sensor consists of three identical but orthogonally oriented acoustic particle-velocity sensors, plus a pressure sensor-all spatially collocated in a point-like geometry. At any point in space, this tri-axial acoustic vector-sensor can sample an acoustic wavefield as a 3 × 1 vector, instead of simply as a scalar of pressure. This vector, after proper self-normalization, would indicate the incident wave-field's propagation direction, and thus the incident emitter's azimuth-elevation direction-of-arrival. This "self-normalization" direction-of-arrival estimator is predicated on the spatial-collocation among the three particle-velocity sensors and the pressure-sensor. This collocation constriction is relaxed here by this presently proposed idea, to realize a spatially distributed acoustic vector-sensor, allowing its four component-sensors to be separately located. This proposed scheme not only retains the algorithmic advantages of the aforementioned "self-normalization" direction-of-arrival estimator, but also will significantly extend the spatial aperture to improve the direction-finding accuracy by orders of magnitude.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Hybrid Cramér-Rao Bound in Closed Form for Direction-of-Arrival Estimation by an "Acoustic Vector Sensor" With Gain-Phase Uncertainties

An “acoustic vector sensor” (also known as a “vector hydrophone” in underwater or sea-surface applications) is composed of three orthogonally oriented uni-axial particle-velocity sensors, plus a “pressure-sensor” (i.e., a microphone or a hydrophone)—all collocated in a point-like spatial geometry. (This collocated setup is versatile for direction finding, because its azimuth-elevation spatial r...

متن کامل

A directionally tunable but frequency-invariant beamformer on an acoustic velocity-sensor triad to enhance speech perception.

Herein investigated are computationally simple microphone-array beamformers that are independent of the frequency-spectra of all signals, all interference, and all noises. These beamformers allow the listener to tune the desired azimuth-elevation "look direction." No prior information is needed of the interference. These beamformers deploy a physically compact triad of three collocated but orth...

متن کامل

Three Dimensional Localization of an Unknown Target Using Two Heterogeneous Sensors

Heterogeneous wireless sensor networks consist of some different types of sensor nodes deployed in a particular area. Different sensor types can measure different quantity of a source and using the combination of different measurement techniques, the minimum number of necessary sensors is reduced in localization problems. In this paper, we focus on the single source localization in a heterogene...

متن کامل

Beamforming pointing error of a triaxial velocity sensor under gain uncertainties.

A "triaxial velocity sensor" consists of three uniaxial velocity sensors, which are nominally identical, orthogonally oriented among themselves, and co-centered at one point in space. A triaxial velocity sensor measures the acoustic particle velocity vector, by its three Cartesian components, individually component-by-component, thereby offering azimuth-elevation two-dimensional spatial directi...

متن کامل

Four-wire orthogonal structure for accurate measurement of fluid velocity and wind flow direction using silicon micro-machining on silicon nitride membranes

Microelectromechanical thermal sensors are one of the most accurate and important tools for measuring the direction and velocity of an acoustic wave and winds. Detection of wind direction and speed in different ranges has different applications such as meteorology, wind power plants, gas flow measurement in smart building and gas consumption of power plants. In this paper, a four wires sensor i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of the Acoustical Society of America

دوره 133 4  شماره 

صفحات  -

تاریخ انتشار 2013